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The Riemann Hypothesis for Period Polynomials (RHPP) is the assertion
that all the roots of period polynomials of modular forms lie on a circle
centered at the origin.

Conrey, Farmer and Imamoglu (2013): the odd part of the period
polynomial for any level 1 cusp form has roots on the unit circle.

El-Guindy and Raji (2014): extend to the full polynomial

Jin, Ma, Ono and Soundararajan (2016): generalized the result for
modular forms of higher levels

Diamantis and Rolen (2018): conjecture for period polynomials
associated to higher derivatives of L-functions

Babei, Rolen and Wagner (2021): analogous result for Hilbert
modular forms on the full Hilbert modular group.
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Modular Forms on SL2(Z)

Let H denote the upper half plane, i.e.

H = {z ∈ C,=(z) > 0}.

Define the full modular group

Γ := SL2(Z) =

{(
a b
c d

)
: a, b, c , d ∈ Z, ad − bc = 1

}
.

SL2(Z) acts on H in the standard way by Möbius transformations:

For z ∈ C and γ =

(
a b
c d

)
∈ Γ, γ.z =

az + b

cz + d
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Definition

A modular form of weight k ∈ Z on Γ is a holomorphic function
f : H→ C satisfying

• f (γz) = (cz + d)k f (z) for γ =

(
a b
c d

)
∈ Γ

• f is holomorphic at ∞
(
or f (z) =

∑∞
n=0 c(n)e2πinz

)
.

Remark

For γ = −I , f (−Iz) = (−1)k f (z); but f (−Iz) = f (z), then non-zero
modular forms must be of even weight.

Definition

If c(0) = 0 in the preceding definition (i.e. f vanishes at ∞), we say that
f is a cusp form.
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We denote by Mk the space of modular forms of weight k on Γ, and by Sk
that of cusp forms.

Theorem

Let f ∈ Sk with f (z) =
∑∞

n=1 a(n)e2πinz . Then the Fourier coefficients
a(n) of f satisfy

a(n) = O
(
n

k
2

)
.

Corollary

If k < 0 and f ∈ Sk , then f ≡ 0.
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The Hecke operators Tn

Definition

For a fixed integer k and any n = 1, 2, ..., the operator Tn is defined on
Mk by the equation

(Tnf )(z) = nk−1
∑
d |n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)
.

Observe that writing n = ad and letting A =

(
a b
0 d

)
, we can write

(Tnf )(z) = nk−1
∑

a≥1,ad=n
0≤b<d

d−k f (Az) =
1

n

∑
a≥1,ad=n

0≤b<d

ak f (Az).
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Theorem

If f has the Fourier expansion at ∞

f =
∞∑

m=0

c(m)e2πimz

then

Tnf (z) =
∞∑

m=0

γn(m)e2πimz

where
γn(m) =

∑
d |(n,m)

dk−1c
(mn

d2

)
.
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Theorem

If f ∈ Mk and V =

(
α β
γ δ

)
∈ Γ, then

Tnf (Vz) = (γz + δ)kTnf (z).

Corollary

If f ∈ Mk then Tnf ∈ Mk . Moreover, if f is a cusp form, then Tnf is also
a cusp form.
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Definition

A non-zero function f satisfying a relation of the form

Tnf = λ(n)f

for some complex scalar λ(n) is called an eigenform of the operator Tn.
Moreover, if f is an eigenform for every Hecke operator Tn, n ≥ 1, then f
is called a simultaneous eigenform. A simultaneous eigenform is said to be
normalized if c(1) = 1, where f (z) =

∑∞
m=0 c(m)e2πimz .

Theorem

Let k be an even integer and 0 6= f ∈ Sk with f (z) =
∑∞

m=1 c(m)e2πimz .
Then f is a normalized simultaneous eigenform if and only if

c(m)c(n) =
∑

d |(n,m)

dk−1c
(mn

d2

)
for all m, n ≥ 1.
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L-functions of Eigenforms

Definition

If f (z) = c(0) +
∑∞

n=1 c(n)e2πinz , we define the Dirichlet L-function of f
as

L(f , s) =
∞∑
n=1

c(n)

ns

Proposition

If f ∈ Sk , then its L-function L(f , s) converges absolutely for <(s) > 1 + k
2 .

Theorem

If f is a normalized Hecke eigenform, then

L(f , s) =
∏

p prime

1

1− c(p)p−s + pk−1−2s
.
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Definition

For f ∈ Sk , define the completed L-function Λ(f , s) of f by taking the
Mellin transform of f along the upper imaginary axis i.e.

Λ(f , s) =

∫ ∞
0

f (iy)y s−1 dy .

Theorem

We have

Λ(f , s) =
Γ(s)

(2π)s
L(f , s)

for <(s) > 1 + k
2 , where Γ(s) =

∫∞
0 e−yy s−1 dy is the Euler gamma

function.
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Theorem

Λ(f , s) extends holomorphically to the complex plane and satisfies the
functional equation

Λ(f , s) = ε(f )Λ(f , k − s)

for all s ∈ C, where ε(f ) = ±1.

Corollary

If f ∈ Sk and k ≡ 2 (mod 4), then Λ(f , k2 ) = 0 = L(f , k2 ).

Corollary

L(f , s) extends to a holomorphic function on C and satisfies the functional
equation

(2π)k−s

Γ(k − s)
L(f , s) = ik

(2π)s

Γ(s)
L(f , k − s)

for all s ∈ C.
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Period Polynomials

Definition

For X ∈ C and a cusp form f ∈ Sk we define the period polynomial of f
by the integral transformation

rf (X ) =

∫ i∞

0
(z − X )k−2f (z) dz .

Theorem

For f ∈ Sk and X ∈ C we have

rf (X ) =
k−2∑
n=0

(
k − 2

n

)
(−X )k−n−2in+1Λ(f , n + 1)

= −
k−2∑
n=0

(
k − 2

n

)
X l(−i)k−n−1Λ(f , k − n − 1).
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Corollary

For f ∈ Sk and X ∈ C we have

rf (X ) = −
k−2∑
n=0

(k − 2)!

n!

L(f , k − n − 1)

(2πi)k−n−1
X n.

Theorem

Let f ∈ Sk and X ∈ C. Then the period polynomial of f satisfies

rf (X ) = −ikε(f )X k−2rf

(
− 1

X

)
.

This “self-inversive” property of the period polynomial, shows that if ρ is a
zero of rf (X ) then so is −1

ρ ; and so the unit circle is a natural line of
symmetry for the period polynomials.
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The Case of the Full Modular Group

Definition

A polynomial P(z) =
∑d

i=0 ciz
i of degree d is said to be self-inversive if it

satisfies

P(z) = εzd P̄
(1

z

)
for some constant ε of modulus 1, where P̄(z) :=

∑d
i=0 c̄iz

i and the bar
denotes complex conjugation.

Lemma

Let h(z) be a nonzero polynomial of degree n with all its zeros in |z | ≤ 1.
Then for d ≥ n and any λ with |λ| = 1, the self-inversive polynomial

P{λ}(z) = zd−nh(z) + λznh̄
(1

z

)
has all its zeros on the unit circle.
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For w = k − 2 ∈ 2N, we have

rf (X ) = − w !

(2πi)w+1

w∑
n=0

L(f ,w − n + 1)
(2πiX )n

n!
.

For convenience, we consider the polynomial with real coefficients

pf (X ) = −(2πi)w+1

w !
rf

(
X

i

)
=

w∑
n=0

L(f ,w − n + 1)
(2πX )n

n!
.

Proposition

pf (X ) is self-inversive and can be written as

pf (X ) = qf (X ) + ikXwqf

( 1

X

)
where

qf (X ) =

w
2
−1∑

n=0

L(f ,w − n + 1)
(2πX )n

n!
+

1

2
L(f , k/2)

(2πX )w/2

(w/2)!
.
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Therefore, rf (X ) would have all its zeros on |z | = 1 if and only if qf (X )
has all its zeros in |z | ≤ 1.

Lemma

Let f ∈ Sk be a normalized Hecke eigenform and let L(f , s) be its
associated L-function. Then, for s ≥ 3k/4, we have

|L(f , s)− 1| ≤ 5× 2−k/4

and, for s ≥ k/2, we have

L(f , s) ≤ 1 + 4
√
k log(2k).
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Let

Hm(z) =
m∑

n=0

(2π)n

n!
zm−n.

Proposition

For m ≥ 25, Hm(z) has all its m zeros in |z | < 1.

Theorem

If f ∈ Sk is a Hecke eigenform, then rf (X ) has all its zeros on the unit
circle.

Proof.

Put m = k/2− 1 = w/2, then for k large enough and |X | = 1

|qf (X )− Hm(X )| < |Hm(X )|

It follows from Rouché’s theorem that qf (X ) has the same number of
zeros as Hm(X ) inside the unit circle.
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Modular Forms on Congruence Subgroups

The principle subgroup of SL2(Z) of level N ∈ N is given by

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
.

Note that Γ(1) = SL2(Z).

Definition

A congruence subgroup is a subgroup of SL2(Z) that contains Γ(N) for
some N ∈ N.

We are interested in the congruence subgroup

Γ0(N) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}
.
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Definition

Let G be a congruence subgroup and α ∈ G . Then α is said to be
parabolic if |tr(α)| = 2.

Definition

A cusp of a congruence subgroup G is an element z ∈ R ∪ {∞} which is
fixed by a parabolic element α of G , i.e. ∃α ∈ G parabolic such that
αz = z .

Definition

A modular form of weight k ∈ Z and level N is a holomorphic function
f : H→ C satisfying:

f (γz) = (cz + d)k f (z) for γ =

(
a b
c d

)
∈ Γ0(N)

• f is holomorphic at all the cusps of Γ0(N).

We denote by Mk(Γ0(N)) the space of modular forms of weight k and
level N.
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If f ∈ Mk(Γ0(N)), then f has a Fourier expansion

f (z) =
∞∑
n=0

ane
2πinz .

Definition

If f ∈ Mk(Γ0(N)) and f (z)→ 0 as z tends to any cusp, then f is said to
be a cusp form and we write f ∈ Sk(Γ0(N)).

A form f ∈ Sk(Γ0(N)) is a newform if it is a normalized eigenform which
cannot be constructed from modular forms of lower levels M dividing N.
The other forms are called oldforms. These oldforms can be constructed
using the following observations: if M | N then Γ0(N) ⊂ Γ0(M) giving a
reverse inclusion of modular forms Mk(Γ0(M)) ⊂ Mk(Γ0(N)).
The space of newforms of level N is denoted by Snew

k (Γ0(N)).
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Let k be even and f ∈ Snew
k (Γ0(N)).

Associated to f is its L-function

L(f , s) =
∞∑
n=1

a(n)

ns
=

∏
p prime

(1− a(p)p−s + 1N(p)pk−1−2s)−1

where 1N(p) is 1 when p - N and is 0 when p | N.
Its completed L-function is defined by

Λ(f , s) = Ns/2

∫ ∞
0

f (iy)y s−1 dy

satisfying, as before,

Λ(f , s) =

(√
N

2π

)s

Γ(s)L(f , s)

and the functional equation

Λ(f , s) = ε(f )Λ(f , k − s),

with ε(f ) = ±1.
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The period polynomial associated to f is the degree k − 2 polynomial

rf (z) =

∫ i∞

0
f (τ)(τ − z)k−2 dτ.

Theorem

The period polynomial of f satisfies

rf (z) = ik−1N−
k−1

2

k−2∑
n=0

(
k − 2

n

)
(
√
Niz)nΛ(f , k − 1− n).

Corollary

The period polynomial of f further satisfies

rf (z) = − (k − 2)!

(2πi)k−1

k−2∑
n=0

(2πiz)n

n!
L(f , k − n − 1).
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Zeros of Period Polynomials

For f ∈ Snew
k (Γ0(N)), put m = k−2

2 and define

Pf (z) =
1

2

(
2m

m

)
Λ(f ,

k

2
) +

m∑
j=1

(
2m

m + j

)
Λ(f ,

k

2
+ j)z j .

Proposition

The period polynomial of f satisfies

rf

(
z

i
√
N

)
= ik−1N−

k−1
2 ε(f )zm

(
Pf (z) + ε(f )Pf

(1

z

))
.

Therefore, rf (z) would have all its zeros on |z | = 1/
√
N if and only if

Pf (z) + ε(f )Pf (1/z) has all its zeros on the unit circle.
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Lemma

Let f ∈ Snew
k (Γ0(N)). Then the function Λ(f , s) is monotone increasing

for s ≥ k
2 + 1

2 . Moreover, we have

0 ≤ Λ(f ,
k

2
) ≤ Λ(f ,

k

2
+ 1) ≤ Λ(f ,

k

2
+ 2) ≤ . . .

If ε(f ) = −1, then Λ(f , k2 ) = 0 and

0 ≤ Λ(f ,
k

2
+ 1) ≤ 1

2
Λ(f ,

k

2
+ 2) ≤ 1

3
Λ(f ,

k

2
+ 3) ≤ . . .

Proof.

We can write

Λ(f , s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ

where the product is over all the zeros of Λ(f , s).
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Lemma

If f ∈ Snew
k (Γ0(N)) and 0 < a ≤ b, then

L(f , k+1
2 + a)

L(f , k+1
2 + b)

≤ ζ(1 + a)2

ζ(1 + b)2

where ζ(s) =
∑∞

n=1 n
−s is the Riemann zeta function.

Proof.

We have that

−ζ
′

ζ
(s) =

∞∑
n=1

Λ(n)

ns

and

−L′

L
(f , s) =

∞∑
n=1

Λf (n)

ns

where |Λf (n)| ≤ 2n
k−1

2 Λ(n).
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Theorem

For k = 4, Pf (z) + ε(f )Pf (1/z) has all its zeros on the unit circle.

Proof.

Here m = (k − 2)/2 = 1, so Pf (z) = Λ(f , 2) + Λ(f , 3)z .
If ε(f ) = −1, then the roots of Pf (z)− Pf (1/z) = Λ(f , 3)(z − 1/z) are at
z = ±1, which lie on the unit circle.
If ε(f ) = 1, then for z = e iθ on the unit circle, Pf (z) + Pf (1/z) =
2Λ(f , 2) + Λ(f , 3)(e iθ + e−iθ) = 2Λ(f , 2) + 2Λ(f , 3) cos(θ), which vanishes
when cos(θ) = −Λ(f , 2)/Λ(f , 3). But, Λ(f , 2) < Λ(f , 3), and so the
equation has two solutions for θ ∈ [0, 2π).
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Theorem

For k = 6, Pf (z) + ε(f )Pf (1/z) has all its zeros on the unit circle.

Proof.

If ε(f ) = −1, we do the same as above.
If ε(f ) = 1, letting z = e iθ we have

Pf (z) + Pf

(
1

z

)
= 6Λ(f , 3) + 8Λ(f , 4) cos θ + 2Λ(f , 5) cos 2θ.

We want to show this has two zeros in [0, π) and thus four zeros in
[0, 2π). Note that

d

dθ

[
Pf (e iθ) + Pf (e−iθ)

]
= −8 sin θ(Λ(f , 4) + Λ(f , 5) cos θ),

we have critical points at 0, π and the solution θ0 ∈ [0, π) to

cos θ = −Λ(f ,4)
Λ(f ,5) .

Mohammad Hamdar (American University of Beirut)The Riemann Hypothesis for Period Polynomials of Modular and Hilbert Modular FormsApril 27, 2021 28 / 1



Theorem

For k = 6, Pf (z) + ε(f )Pf (1/z) has all its zeros on the unit circle.

Proof.

If ε(f ) = −1, we do the same as above.
If ε(f ) = 1, letting z = e iθ we have

Pf (z) + Pf

(
1

z

)
= 6Λ(f , 3) + 8Λ(f , 4) cos θ + 2Λ(f , 5) cos 2θ.

We want to show this has two zeros in [0, π) and thus four zeros in
[0, 2π). Note that

d

dθ

[
Pf (e iθ) + Pf (e−iθ)

]
= −8 sin θ(Λ(f , 4) + Λ(f , 5) cos θ),

we have critical points at 0, π and the solution θ0 ∈ [0, π) to

cos θ = −Λ(f ,4)
Λ(f ,5) .

Mohammad Hamdar (American University of Beirut)The Riemann Hypothesis for Period Polynomials of Modular and Hilbert Modular FormsApril 27, 2021 28 / 1



Proof.

To get two roots in [0, π) we need Pf (e iθ) + Pf (e−iθ) to be positive at
θ = 0 and π and negative at θ = θ0. At
θ = 0, Pf (e iθ) + Pf (e−iθ) = 6Λ(f , 3) + 8Λ(f , 4) + 2Λ(f , 5) > 0. Positivity
at θ = π is equivalent to

Λ(f , 5) + 3Λ(f , 3)+ > 4Λ(f , 4)

while negativity at θ = θ0 is equivalent to

Λ(f , 5)2 + 2Λ(f , 4)2 < 3Λ(f , 3)Λ(f , 5).

We show these inequalities using a clever application of the Hadamard
formula from earlier.
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We have for z = e iθ

Pf (z) + Pf

(1

z

)
=

(
2m

m

)
Λ(f ,

k

2
) + 2

m∑
j=1

(
2m

m + j

)
Λ(f ,

k

2
+ j) cos(jθ),

and

Pf (z)− Pf

(1

z

)
= 2

m∑
j=1

(
2m

m + j

)
Λ(f ,

k

2
+ j) sin(jθ).

Theorem

For 8 ≤ k ≤ 14, Pf (z) + ε(f )Pf (1/z) has all its zeros on the unit circle.

Proof.

Using classical work of Pólya and Szegö on trigonometric polynomials,
together with our lemmas, the result is true if

N ≥ max
1≤j≤k/2−2

(
2π

k/2− j − 1

)2 ζ(j + 1/2)4

ζ(j + 3/2)4
.
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Proof.

For any given k, we can compute this bound. Thus, for k = 8 it suffices to
take N ≥ 142; for k = 10 it suffices to have N ≥ 64; for k = 12 it suffices
to have N ≥ 45; for k = 14 it suffices to have N ≥ 42. We can use PARI
to check for those newforms not covered by this bound for weights
8 ≤ k ≤ 14.

Remark

Eventually, the inequality cannot furnish a bound better than 4π2 for N,
and so we must turn to another approach for large k and small N.
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Proposition

Pf (z) can be written as

Pf (z) = (2m)!

(√
N

2π

)2m+1

L(f , 2m + 1)Qf (z)

where

Qf (z) = zm
m−1∑
j=0

1

j!

(
2π

z
√
N

)j L(f , 2m + 1− j)

L(f , 2m + 1)

+
1

2(m!)2

(
2π√
N

)2m+1 Λ(f , k2 )

L(f , 2m + 1)
.

Therefore, we need to study the zeros of(
Qf (z) + ε(f )Qf

(
1

z

))
.
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But, note that

Qf (z)− Qf

(
1

z

)
= 2=

(
Qf (z)

)
and

Qf (z) + Qf

(
1

z

)
= 2<

(
Qf (z)

)
.

Theorem

For k ≥ 16, the real and imaginary parts of Qf (z) have all their zeros on
the unit circle.
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Algebraic Detour

Let Q ⊂ K ⊂ C be a field.
We can consider K as a vector space over Q.
K is called an algebraic number field if the dimension of this vector space
is finite. This dimension is called the degree of K .
The smallest K which contains a is denoted by

K = Q(a).
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An embedding of a number field K in C is an injective field
homomorphism of K into C.

Theorem

Let K be a number field of degree n. Then there are exactly n different
embeddings of K in C.

We usually arrange the embeddings in a certain order and denote them by

K → K (j) ⊂ C

a→ a(j), j = 1, . . . , n.

We put the n embeddings together into a single Q-linear injective mapping

K → Cn, a→ (a(1), a(2), . . . , a(n)).

An embedding is called real if its image is contained in R. K is called
totally real if it admits only real embeddings.
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The trace and norm of an element a ∈ K over Q are given, respectively, by

Tr(a) = TrK/Q(a) =
n∑

j=1

a(j), N(a) = NK/Q(a) =
n∏

j=1

a(j).

Definition

Let K be an algebraic number field. The ring of integers of K is defined as

OK = K ∩ Z,

where Z is the algebraic closure of Z.

Theorem

Let K be a number field of degree n. Then OK is a free Z-module of rank
n.

Mohammad Hamdar (American University of Beirut)The Riemann Hypothesis for Period Polynomials of Modular and Hilbert Modular FormsApril 27, 2021 36 / 1



The trace and norm of an element a ∈ K over Q are given, respectively, by

Tr(a) = TrK/Q(a) =
n∑

j=1

a(j), N(a) = NK/Q(a) =
n∏

j=1

a(j).

Definition

Let K be an algebraic number field. The ring of integers of K is defined as

OK = K ∩ Z,

where Z is the algebraic closure of Z.

Theorem

Let K be a number field of degree n. Then OK is a free Z-module of rank
n.

Mohammad Hamdar (American University of Beirut)The Riemann Hypothesis for Period Polynomials of Modular and Hilbert Modular FormsApril 27, 2021 36 / 1



The trace and norm of an element a ∈ K over Q are given, respectively, by

Tr(a) = TrK/Q(a) =
n∑

j=1

a(j), N(a) = NK/Q(a) =
n∏

j=1

a(j).

Definition

Let K be an algebraic number field. The ring of integers of K is defined as

OK = K ∩ Z,

where Z is the algebraic closure of Z.

Theorem

Let K be a number field of degree n. Then OK is a free Z-module of rank
n.

Mohammad Hamdar (American University of Beirut)The Riemann Hypothesis for Period Polynomials of Modular and Hilbert Modular FormsApril 27, 2021 36 / 1



Write OK = 〈a1, a2, . . . , an〉Z and let

A =


a

(1)
1 a

(2)
1 . . . a

(n)
1

a
(1)
2 a

(2)
2 . . . a

(n)
2

. . .

. . .

a
(1)
n a

(2)
n . . . a

(n)
n

 .

Then the discriminant DK of K is given by DK = (detA)2.
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A subset a ⊂ K is called an ideal of K if a is an OK -submodule of K .

An ideal a is said to be integral if a ⊂ OK .
We define the Norm of an integral ideal a as

N(a) := |OK/a|.
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Hilbert Modular Forms

Let K be a totally real number field of degree n.

If we attach to the matrix

M =

(
a b
c d

)
∈ GL2(K )

the tuple (M1, . . . ,Mn) where

Mj =

(
a(j) b(j)

c(j) d (j)

)
, j = 1, . . . , n

we obtain an embedding of groups

GL2(K ) ↪→ GL2(R)n.
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The group

GL+
2 (K ) =

{
γ =

(
a b
c d

)
∈ GL2(K ) : detγj > 0 for j = 1, . . . , n

}
acts on Hn by coordinate linear fractional transformations, i.e. for
z = (z1, . . . , zn) ∈ Hn

z → γz = (γizi )i =

(
a(1)z1 + b(1)

c(1)z1 + d (1)
, . . . ,

a(n)zn + b(n)

c(n)zn + d (n)

)
.

We define the full Hilbert modular group to be

ΓK := GL+
2 (OK ).
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Definition

A holomorphic function f : Hn → C is called a holomorphic Hilbert
modular form of weight (k1, k2, . . . , kn) ∈ Zn for ΓK , if for all(
a b
c d

)
∈ ΓK

f (γz) =
n∏

i=1

det(γi )
−ki/2

(
c(i)zi + d (i)

)ki
f (z).

If k1 = k2 = · · · = kn := k then f is said to have parallel weight, and is
simply called a holomorphic Hilbert modular form of weight k ∈ Z.
We denote the space holomorphic Hilbert modular forms of weight k on
ΓK by Mk(ΓK ). Moreover, If f ∈ Mk(ΓK ) vanishes at the cusps of ΓK , we
call it a cusp form and denote this space by Sk(ΓK ) as usual.
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f ∈ Sk(ΓK ) has an associated L-function given by

L(f , s) :=
∑
n∈OK
n 6=0

a(n)

N(n)s
.

If U = (O∗K )+ then letting f (z) = f (z1, . . . , zn), N(z) = z1 . . . zn and
dz = dz1 . . . dzn, we can define the completed L-function by

Λ(f , s) :=

∫
(R+)n/U

f (iy)N(y)s−1 dy ,

which satisfies

Λ(f , s) =

(
DK

(2π)n

)s

Γ(s)nL(f , s) (1)

and the functional equation

Λ(f , s) = ε(f )Λ(f , k − s)

where ε(f ) ∈ {±1}.
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We further define the period polynomial of a parallel weight k Hilbert
modular eigenform f as

rf (X ) :=

∫
i((R+)n/U)

f (τ)(N(τ)− X )k−2 dτ.

In analogy with the classical case,

Theorem

The period polynomial rf of f satisfies

rf (X ) =
k−2∑
`=0

(−1)`in(k−`−1)

(
k − 2

`

)
X `Λ(f , k − `− 1).
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Zeros of Period Polynomials

let K be a number field of degree n and f be a parallel weight k Hilbert
modular eigenform. Put m := k−2

2 and define

Pf (X ) =
1

2

(
2m

m

)
Λ(f ,

k

2
) +

m∑
j=1

(
2m

m + j

)
Λ

(
f ,

k

2
+ j

)
X j

and

Qf (X ) =
1

Λ(f , 2m + 1)
Pf (X ).

Proposition

rf (in+2X ) is self-inversive and can be written as

rf (in+2X ) = in(2m+1)ε(f )Λ(f , 2m + 1)Xm

[
Qf (X ) + ε(f )Qf

(
1

X

)]
.

Then, rf (X ) would have all its zeros on the unit circle if and only if Qf (X )
has all its zeros inside the unit circle.
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Theorem

For k = 4 and k = 6, Pf (X ) + ε(f )Pf (1/X ) has all its zeros on the unit
circle.

For large weights, we compare Qf (X ) to Xm and use Rouchés Theorem to
show Qf (X ) has all its zeros inside the unit circle.
On |X | = 1, we show |Qf (X )− Xm| ≤ Tn(m) where

Tn(m) =
1

2

Γ(m + 1)n−2

Γ(2m + 1)n−1

(
(2π)n(n!)2

n2n

)m (
11

5

)n

+
m−1∑
j=1

1

j!

(
(2π)n(n!)2

n2n

)j (
Γ(2m + 1− j)

Γ(2m + 1)

)n−1(ζ(1/2 + m − j)

ζ(1/2 + m)

)2n
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Therefore, we need to show that Tn(m) < |Xm| = 1 for n ≥ 2 and m big
enough.

The numbers Tn(m) are decreasing as n increases because each individual
term is decreasing.
We show that Tn(m) is also decreasing in m. Therefore, once we have
T2(m0) < 1 for some m0, we then automatically get that Tn(m) < 1 for
any n ≥ 2 and m ≥ m0. We do this by showing Tn(m + 1)− Tn(m) ≤ 0.
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Thank You!
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