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Introduction

Let p be an odd prime and q = pr for some r ∈ Z+. We are mainly
interested in the number of zeros of Artin-Schreir type curves

yq − y = f (x) where f (x) ∈ Fq[x ].

over Fq. Mostly, we focus on supersingular Artin-Scherier curves.
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Linearized Polynomials

A polynomial of the form

L(x) =
n∑

i=0

αix
qi

with coefficients in an extension field Fqm of Fq is called a
q-polynomial over Fqm . Observe that the L-polynomial of our
curve is Fq-linear.
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Quadratic Forms

It is well-known that the function from Fqn to Fq such that

x 7→ TrFqn/Fq
(xL(x))

is a quadratic form over Fq. The number of zeros of such a
quadratic form Q can be written as

qn−1 + λ(q − 1)q
n+w
2

−1

where λ ∈ {−1, 0, 1} and w is the dimension of

{x ∈ Fqn : Q(x + y)− Q(x)− Q(y) = 0 for all y ∈ Fqn}

of Q when q is odd. The dimension of radical of Q has slightly
different definition for even characteristic. Note if n and w have
different parity (odd/even), then λ has to be 0. Otherwise, it
should be ±1.
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Reduction Theorem for Supersingular Curves

Theorem

Let C be a supersingular curve of genus g defined over Fq with
period s. Let n be a positive integer, let m = gcd(n, s) and write
n = m · t. If q is odd, then we have

#C (Fqn)− (qn + 1) =
q
(n−m)

2 [#C(Fqm )−(qm+1)] if m·r is even

q
(n−m)

2 [#C(Fqm )−(qm+1)] (−1)(t−1)/2

p
t if m·r is odd and p-t

q
(n−m)

2 [#C(Fqm )−(qm+1)] ifm·r is odd and p|t.

If q is even, then we have

#C (Fqn)− (qn + 1) ={
q
(n−m)

2 [#C(Fqm )−(qm+1)] if m·r is even

q
(n−m)

2 [#C(Fqm )−(qm+1)](−1)(t
2−1)/8 if m·r is odd.
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Fibre Products of Artin-Schreier Curves

Consider
C : yq

n − y = f (x)

over Fqn .
For α ∈ F∗

qn , define

Hα = {x ∈ Fqn : TrFqn/Fq
(αx) = 0}.

Then Hα is an additive subgroup of Fq. We can view Hα as a

subgroup of Aut(C ). |F∗
qn/F∗

q| =
qn−1
q−1 many α is enough for fibre

product.
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For

yα =
∏
γ∈Hα

(y + γ)

we have that

Cα := C/Hα : yqα − yα = αf (x).

Theorem

JC ∼
∏

α∈F∗
qn
/F∗

q

JCα
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Therefore, the L-polynomial of the curve C is equal to product of
the L-polynomials of the curves Cα.

Theorem

#C (Fqm)−
∑

α∈F∗
qm

/F∗
q

#Cα(Fqm) = (qm + 1)

[
1− qn − 1

q − 1

]
.
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The polynomial x t − a

Theorem

Let t ≥ 2 be an integer and a ∈ F∗
q. Then x t − a is irreducible if

and only if the following two conditions are satisfied:
1. Each prime factor of t divides the order of e of a in F∗

q, but not
(q − 1)/e.
2. If t ≡ 0 mod4 then q ≡ 1 mod4.

If q ≡ 3 mod 4 then q = 2Au − 1 with A ≥ 2 and u is odd.
Suppose that condition 1. is satisfied and t is divisible by 2A. We
write t = Bv with B = 2A−1 and v is even. Then x t − a factors as
a product of B monic irreducible polynomials in Fq[x ] of degree
t/B = v .
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The polynomial x t − a

Theorem

Let

F (x) =

B/2∑
i=0

(B − i − 1)!B

i !(B − 2i)!
xB−2i ∈ Fq[x ].

Then roots c1, . . . , cB are all in Fq, and in Fq[x ] we have the
canonical factorization

x t − a =
B∏
j=1

(xv − bcjx
v/2 − b2).
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Results

We counted number of rational points of the curve

yq
n − y = γxp

h+1 − α where α ∈ Fqm , γ ∈ F∗
qm and h ∈ Z≥0

over Fqm , by finding

|{x ∈ Fqm | TrFqm/Fp
(γxq

h+1)=β}|

for each β ∈ Fp.
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Next Aim

Now, one of our aims is to find the 1rational points of the curve

yq − y = xq
k+1 + ax2 + bx + c where a, b, c ∈ F∗

q, k ∈ Z+.
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Thank You!
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