Modularity, Level Lowering, and the Proof of Fermat's Last Theorem

Mohammad Hamdar

Université de Montréal, April 8 2024

Modular Forms: A Quick Intro

Mohammad Hamdar [Modularity, Level Lowering, and the Proof of Fermat's Last Theorem](#page-0-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Þ

Modular Forms: A Quick Intro

Let

$$
\mathbb{H}=\{z\in\mathbb{C}, \Im(z)>0\}
$$

denote the upper half plane, and

$$
\Gamma(1):=SL_2(\mathbb{Z})=\left\{\begin{pmatrix}a&b\\c&d\end{pmatrix}:\ a,b,c,d\in\mathbb{Z},\ ad-bc=1\right\}
$$

be the full modular group.

Then $SL_2(\mathbb{Z})$ acts on $\mathbb H$ in the standard way by Möbius transformations:

For
$$
z \in \mathbb{H}
$$
 and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$, $\gamma.z = \frac{az+b}{cz+d}$

イ何 トイヨ トイヨ トー

 QQ

Definition

A modular form of weight $k \in \mathbb{Z}$ on $\Gamma(1)$ is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ satisfying

•
$$
f(\gamma z) = (cz + d)^k f(z)
$$
 for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(1)$

• *f* is holomorphic at
$$
\infty
$$
 (or $f(z) = \sum_{n=0}^{\infty} a_n e^{2\pi i nz}$).

Definition

If $a_0 = 0$ in the preceding definition (i.e. f vanishes at ∞), we say that f is a cusp form.

∢ 何 ▶ (ヨ ▶ (ヨ ▶

∍

Modular Forms on Congruence Subgroups

The principle subgroup of $SL_2(\mathbb{Z})$ of level $N \in \mathbb{N}$ is given by

$$
\Gamma(N):=\left\{\begin{pmatrix}a&b\\c&d\end{pmatrix}\in SL_2(\mathbb{Z}): \begin{pmatrix}a&b\\c&d\end{pmatrix}\equiv \begin{pmatrix}1&0\\0&1\end{pmatrix}\mod N\right\}.
$$

Definition

A congruence subgroup is a subgroup of $SL_2(\mathbb{Z})$ that contains Γ(N) for some $N \in \mathbb{N}$.

Definition

A modular form of weight $k \in \mathbb{Z}$ and level N is a holomorphic function $f : \mathbb{H} \to \mathbb{C}$ satisfying:

•
$$
f(\gamma z) = (cz + d)^k f(z)
$$
 for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$

f is holomorphic at all the cusps of $\Gamma_0(N)$.

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

 \equiv

- A cusp form f of level N is called a newform if it is a normalized eigenform which cannot be constructed from modular forms of lower levels M dividing N.
- Oldforms can be constructed using the following observation: if $M \mid N$ then $\Gamma_0(N) \subset \Gamma_0(M)$ giving a reverse inclusion of modular forms $M_k(\Gamma_0(M)) \subset M_k(\Gamma_0(N))$.
- For Modularity, we will consider weight 2 newforms.

KAD → KE → KE → E → MQ ∩

- A cusp form f of level N is called a newform if it is a normalized eigenform which cannot be constructed from modular forms of lower levels M dividing N.
- Oldforms can be constructed using the following observation: if $M \mid N$ then $\Gamma_0(N) \subset \Gamma_0(M)$ giving a reverse inclusion of modular forms $M_k(\Gamma_0(M)) \subset M_k(\Gamma_0(N))$.
- For Modularity, we will consider weight 2 newforms.

Theorem

There are no newforms of weight 2 at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60

イロン イ何ン イヨン イヨン・ヨー

The Modularity Theorem

Given a newform $f(z) = q + \sum_{n=2}^{\infty} a_n q^n$, we have that:

- $K = \mathbb{Q}(a_2, a_3, \dots)$ is a totally real finite extension of Q.
- $a_i \in \mathcal{O}_K$.

We call f rational if $K = \mathbb{Q}$.

4 AD + 4 B + 4 B + 1 B + 9 Q O

The Modularity Theorem

Given a newform $f(z) = q + \sum_{n=2}^{\infty} a_n q^n$, we have that:

- $K = \mathbb{Q}(a_2, a_3, \dots)$ is a totally real finite extension of Q.
- $a_i \in \mathcal{O}_K$.

We call f rational if $K = \mathbb{Q}$. Given an elliptic curve E over $\mathbb Q$, we can define the conductor of E as

$$
N = \prod_{p \text{ bad}} p^{f_p}
$$

where $f_p = 1$ if E has multiplicative reduction at p, and if E has additive reduction at p: $f_p = 2$ if $p \neq 2, 3$ and for $p = 2, 3, f_p > 2$ are given by Ogg's formula.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{BA} \rightarrow \overline{BA}

Theorem (Modularity, Wiles and others $^1)$

There is a bijection from

 ${Rational}$ Newforms of weight 2 and Level N ${R}$

to

 $\{Isogeny Classes of Elliptic Curves over \mathbb{O} of Conductor N\}$

given by

$$
f(q)=q+\sum_{n=2}^{\infty}a_nq^n\leftrightarrow E_f,
$$

where $a_p = a_p(E_f)$ with $a_p(E_f) := p + 1 - \#E_f(\mathbb{F}_p)$ for all primes $p \nmid N$.

¹including Breuil, Conrad, Diamond, and Taylor Mohammad Hamdar [Modularity, Level Lowering, and the Proof of Fermat's Last Theorem](#page-0-0)

Definition Let \bullet E be an elliptic curve of conductor N , • $f = q + \sum_{n \geq 2} c_n q^n$ be a newform of level N', • $K = \mathbb{Q}(c_2, c_3, \dots),$ \bullet p a prime. We say E arises from f mod p and write $E \sim_p f$ if there is some prime ideal $p \mid p$ of \mathcal{O}_K such that for all primes ℓ

- i) if $\ell \nmid pNN'$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{p}$
- ii) if ℓ ||N and $\ell \nmid p$ N' then $\ell + 1 \equiv \pm c_{\ell} \pmod{\mathfrak{p}}$

If f is rational then it corresponds to an elliptic curve E' of conductor \mathcal{N}' . In which case we write $E\sim_\rho E'.$

KEL KALK KELKEL KARK

Ribet's Level Lowering Theorem

Let

- 1) E/\mathbb{O} be an elliptic curve
- 2) $\Delta = \Delta_{\text{min}}$ the discriminant of a minimal model of E
- 3) N be the conductor of E
- 4) for a prime p,

$$
N_p = N / \prod_{\substack{q \mid |N \\ p | \text{ord}_q(\Delta)}} q \, \cdot
$$

Theorem (A simplified special case of Ribet's Theorem)

Let $p > 3$ be a prime. Suppose

- E has no p-isogenies
- \bullet E is modular

Then there exists a newform f of level N_p such that $E \sim_p f$.

オート オート オート

 2990

∍

Theorem (Mazur)

Let E/\mathbb{Q} be an elliptic curve and p a prime number. If one of the following holds:

- $p > 163$,
- or $p \geq 5$ and $#E(\mathbb{Q})[2] = 4$ and the conductor of E is squarefree,

then E doesn't have p-isogenies.

押 ▶ イヨ ▶ イヨ ▶ │

 Ω

A brief chronology of the progress made toward proving Fermat's Last Theorem prior to Wiles' work is listed below below.

Source: Andrew Sutherland's lecture notes on elliptic curves, lecture 26

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 트 - 19 Q @

Let $p \geq 5$ be a prime number and a, b, c be integers satisfying

$$
a^p+b^p+c^p=0
$$

with $abc \neq 0$, $gcd(a, b, c) = 1, 2 | b$, and $a^p \equiv -1 \pmod{4}$.

KAD → KE → KE → E → MQ ∩

Let $p > 5$ be a prime number and a, b, c be integers satisfying

$$
a^p+b^p+c^p=0
$$

with $abc \neq 0$, $gcd(a, b, c) = 1, 2 | b$, and $a^p \equiv -1 \pmod{4}$. This gives rise to an elliptic curve over Q

$$
E: Y^2 = X(X-a^p)(X+b^p),
$$

with $\Delta = 16$ a^{2p}b^{2p}(a^p + b^p)² = 16a^{2p}b^{2p}c^{2p}.

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}) \overline{BC}

We can apply Tate's algorithm to get

$$
\Delta_{\min} = \frac{a^{2p}b^{2p}c^{2p}}{2^8}, \quad N = \prod_{\ell \mid abc} \ell.
$$

Recall

$$
N_p = N / \prod_{\substack{q \mid |N \\ p | \text{ord}_q(\Delta)}} q,
$$

and so in this case $N_p = 2$.

イ押 トイヨ トイヨ トー

Þ

By Mazur's Theorem, E doesn't have any p-isogenies for $p > 5$.

イ押 トイヨ トイヨ ト

 \equiv

By Mazur's Theorem, E doesn't have any p-isogenies for $p > 5$. Therefore, we can use Ribet's Theorem to get that there exists a newform f of level $N_p = 2$ such that $E \sim_p f$.

 $\left\{ \left\vert \left\langle \left\langle \left\langle \varphi\right\rangle \right\rangle \right\rangle \right\langle \left\langle \left\langle \varphi\right\rangle \right\rangle \$

 QQ

By Mazur's Theorem, E doesn't have any p-isogenies for $p > 5$. Therefore, we can use Ribet's Theorem to get that there exists a newform f of level $N_p = 2$ such that $E \sim_p f$. But recall,

Theorem

There are no newforms of weight 2 at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60

Contradiction!

 $\left\{ \begin{array}{ccc} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0$

Thank You!

Mohammad Hamdar [Modularity, Level Lowering, and the Proof of Fermat's Last Theorem](#page-0-0)

メロメメ 御 メメ きょく きょう

目